Saturday, May 14, 2016

An Alternative to "Add the Opposite"

I've always been a little bothered by how textbooks (and presumably, teachers) explain subtracting integers on a number line. Here's an excerpt from a recent Pearson textbook which has been aligned to the Common Core:


From this, we see that 9 - 5 = 9 + (-5), and from that we conclude that we can always subtract numbers by adding the additive inverse. This makes sense, but what about subtracting a negative? We're just supposed to accept that it is the same as adding a positive? Or what if we are subtracting negatives from a positive? How do you take something away when it's not even there? (I know...zero pairs.)

So how do you explain this without simply telling students to "add the opposite"? Wouldn't it be better if students were comfortable with subtracting negatives?

I teach adding and subtracting integers by having students locate the first number on the number line. You then have two options...you're either going left or right. To do this, they look at the operation. If they see +, they think that they need more of something. If they see -, they think that they need less of something. If we see plus a positive, we need to go in a more positive direction (right). If we see plus a negative, we need to go in a more negative direction (left). For minus a positive, we go less positive (left). For minus a negative, we go less negative (right). And that's it. It makes sense to them and we don't have to be afraid of the subtraction sign.

From here, students use number lines to solve addition and subtraction problems, and eventually, they start to make their own connections. They see that subtracting a negative has the same effect as adding a positive. They see that subtracting a positive has the same effect as adding a negative. As we work with larger numbers, students become less reliant on the number line and use their intuition.

One of the best things about teaching this way is that some of my struggling students can always fall back on the number line. Don't get me wrong, it can be painful to watch a student solve -27-1 by extending a number line far out to the left. I let them do it and then ask them to try a similar problem without writing anything down. Over time, they learn to trust themselves and do it mentally.

Another nice thing about teaching this way is that you can easily extend these ideas to multiplying integers. Positive times negative means more negative. Negative times negative means less negative. You can show how this works with repeated addition/subtraction: -3(-4) = -(-4) - (-4) - (-4).

I hope this provides you with a better alternative than the standard textbook explanation. If you try this, please leave a comment below on any insights that you have.